2013年4月28日星期日

Material Evaporation Methods of EB Coating


Refractory carbides like titanium carbide and borides like titanium boride and zirconium boride can evaporate without undergoing decomposition in the vapor phase. These compounds are deposited by direct evaporation. In this process these compounds, compacted in the form of an ingot, are evaporated in vacuum by the focused high energy electron beam and the vapors are directly condensed over the substrate.

Certain refractory oxides and carbides undergo fragmentation during their evaporation by the electron beam, resulting in a stoichiometry that is different from the initial material. For example, alumina, when evaporated by electron beam, dissociates into aluminum, AlO3 and Al2O. Some refractory carbides like silicon carbide and tungsten carbide decompose upon heating and the dissociated elements have different volatilities. These compounds can be deposited on the substrate either by reactive evaporation or by co-evaporation. In the reactive evaporation process, the metal is evaporated from the ingot by the electron beam. The vapors are carried by the reactive gas, which is oxygen in case of metal oxides or acetylene in case of metal carbides. When the thermodynamic conditions are met, the vapors react with the gas in the vicinity of the substrate to form films. Metal carbide films can also be deposited by co-evaporation. In this process, two ingots are used, one for metal and the other for carbon. Each ingot is heated with a different beam energy so that their evaporation rate can be controlled. As the vapors arrive at the surface, they chemically combine under proper thermodynamic conditions to form a metal carbide film.

More information or material used in EB coating, please contact sales@chinatungstem.com.

没有评论:

发表评论